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Outline 
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• Superconducting electron linacs & their applications 

• Photonuclear isotope production 

– Research isotopes (DOE Isotope Program) 

– Mo-99 (commercial market) 

• Mo-99 production rates 

• Mo-99 recovery 

• NRC & state licenses 

• Niowave headquarters – prototype & commission 

• Niowave airport facility – production & distribution 



Why Superconducting? 
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• 106 lower surface resistance than copper 

– Most RF power goes to electron beam 

– CW/continuous operation at relatively high 

accelerating gradients >10 MV/m 

• Large aperture resonant cavities 

– Improved wake-fields and higher order mode 

spectrum 

– Preserve high brightness beam at high average 

current (high power) 



Commercial Uses of 

Superconducting Electron Linacs 

Free Electron Lasers 

High 

Power 

 X-Ray 

Sources 

Radioisotope Production 

High 

Flux  

Neutron  

Sources 
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Superconducting 

Turnkey Electron Linacs 
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Turn-key Systems  
• Superconducting Linac 

• Helium Cryoplant 

• Microwave Power 

• Licensing  

Electron Beam Energy 0.5 – 40 MeV 

Electron Beam Power 1 W –  100 kW 

Electron Bunch Length ~5 ps 



Turnkey Linac Subsystems 
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Commercial 4 K refrigerators 
(rugged piston-based systems, 

100 W cryogenic capacity) 

Superconducting cavities and cryomodules 

High-power 

couplers 

RF electron guns 

Solid-state and 

tetrode RF 

amplifiers 
(up to 60 kW) 



Superconducting 

Accelerating Cavities 
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multi-cell elliptical 

quarter-wave 

photonic bandgap 

multi-spoke 

Variety of new SRF 

cavity shapes are allowing 

compact, low-frequency 

acceleration with high 

average beam power. 



Frequency & Temperature 
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• Superconducting linacs have inherent losses 

due to the time varying fields 

 

 

 

• For commercial electron linacs the minimum 

costs for a system occur around: 

– 300-350 MHz (multi-spoke structures) 

– 4.5 K (>1 atmosphere liquid helium) 

RBCS ∝ f 2  
exp −

Tc

T
  

frequency 

superconducting 

transition temperature 

operating temperature 



Superconducting  

Multi-Spoke Cavities 

• Advantages for low frequency, high current linacs 

– Mechanical stability (stable against microphonics) 

– Compact geometry for improved real-estate gradient and low-

frequency operation at 4 K 

– Improved higher-order-mode (HOM) spectrum and 

damping 
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solid state 

tetrode IOT 
klystron 

RF Power Sources 
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• Solid-state supplies to 5 kW 

• Tetrode amplifer to 60 kW 

• IOTs to 90 kW 

• Klystrons to >1 MW 

1 W                   1 kW                  1 MW 

solid-state 

inductive output tube 

klystron 

tetrode 



Commercial 4 K Refrigerators 
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• Cryo-cooler to 5 W 

– 4.5 K operation 

– 5 kW electrical power 

• Commercial refrigerator 

to 110 W 

– 4.5 K operation  

   (slightly above 1 atm) 

– total electrical power 100 

kW 

– higher capacity units 

available 

compressor 

5 W cryocooler 

110 W refrigerator 



2 & 10 MeV Injectors 
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12 

normal-conducting 

thermionic-cathode RF gun 

SRF booster 

cavity 

test beam dump 

low-energy electron 

transport beamline 

Parameter 2 MeV 10 MeV 

cathode type thermionic thermionic 

NCRF electron gun 

energy 
100 keV 100 keV 

SRF booster cavity 

energy 
2 MeV 10 MeV 

bunch repetition 

rate (gun, booster 

frequency) 

350 MHz 350 MHz 

transverse 

normalized rms 

emittance 

3-5 mm 

mrad 

3-5 mm 

mrad 

bunch length @ 2 

MeV 
2-5 ps 2-5 ps 

average beam 

current 
2 mA 1-2 mA 



Liquid Metal Converters[1] 
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Bremsstrahlung 
Converter: 
 
• High conversion efficiency 

(high Z) 
• High melting point, if the 

converter is solid 
• Low melting point and good 

thermomechanical properties 
(e.g., swelling, ductility loss, 
creep rates, etc.), if the 
converter is liquid 

• Optimum thickness depends 
on electron energy and 
material 



Liquid Metal Converters[2] 
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Lead-Bismuth Eutectic (LBE) 
 
• Low melting point:  
 124°C 
• High boiling point:  
 1670°C 
• Z=82,83 

 

Converter region 

Electron 

beam 

40 MeV, 1 kW test (2013) 



Isotope Production 

• Photonuclear production of medical, industrial, and 

research isotopes for DOE program 

– (γ, n) 

– (γ, p) 

– (n, γ) 

• Mo-99 production from LEU  - domestic facilities 

which do not rely on using highly enriched uranium 

– (γ, fission) 

– (n, fission) 
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Photo-production of Isotopes 
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p 

Electrons are 
accelerated  Electrons brake and 

produce photons 

e 

Photons knock out 
neutrons (or protons) 
and new isotopes are 
formed 

Zn-68 Cu-67 

+ 

 
max

)()(

E
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dEEENY 

φ(E) σ(E) 



Copper-67 

68Zn(γ,p)67Cu 

  

• Cu-67 measured activity:  

16.0±0.4 μCi/(g·kW·h)  

•  Predicted activity:  

20 μCi/(g·kW·h) 
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Zn sample 

e- beam 

  
Scaled up activity: 0.2 Ci/g  
(using Zn-68, 100 kW beam 
and 24 h irradiation) 



Actinium-225 

Photoneutron cross-section is typically higher 

than photoproton cross-section, however the 

produced isotope is chemically identical to the 

target material. 
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226Ra(γ,n)225Ra  → 225Ac 
  
T1/2 = 15 days (225Ra) 
T1/2 = 10 days (225Ac) 
 
  

β- 



Molybdenum-99 
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Electrons are 
accelerated  

Electrons brake and 
produce photons 

e 

Photons: 
a) Induce photon-fission 
b) Liberate neutrons via 

fission and (γ,n) reactions 
and result in neutron-
induced fission 

(γ,n) 

(γ,f) 

U-235 Mo-99 Sn-13x 

+ + 
n 

+ 

U-238 Mo-99 Sn-13x 

+ 

γ 

+ 

+ 



Mo-99 Production Rates 

• Using LEU we plan to produce  ̴ 9 kCi of Mo-99   

( ̴ 1,500 six-day curies) weekly at each of the 40 

MeV 100 kW facilities 
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• 4-5 such facilities 

will satisfy North 

America’s demand 

of Mo-99 

 



Mo-99 Recovery 

• Metal uranium production targets 

• Molybdenum recovery 

– Uranium target dissolution with HNO3  

– Molybdenum adsorption on ion exchange resin 

• Standard Tc-99m generators 

– Capable of using the existing supply chain 

• Waste consolidated and shipped to LLW/HLW 

repositories 
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Licenses 

• State of Michigan  

– Licensed to operate 40 MeV, 100 kW linacs 

(Agreement State) 

• Nuclear Regulatory Commission 

– License to manufacture and distribute isotopes 

• Research isotopes – submitted and under review 

• Mo-99 from LEU – submitted 
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Niowave Headquarters [1] 

• Prototype and commission 
– 40 MeV superconducting electron linac 

– Isotope production target 

• 2012 Dedication of testing facility 
– Keynote speakers:  Senator Carl Levin, Senator Debbie Stabenow, Rear 

Admiral Matthew Klunder and MSU Provost Kim Wilcox 

 

23 



Niowave Headquarters [2] 
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• Total 60,000 SF  
– Full in-house design, 

manufacturing, processing 

and testing capability 

– 3+ megawatts power  

– 60 kW RF power systems 

– Two 100 W helium 

refrigerators 

– Licensed to operate up to 40 

MeV and 100 kW 

Interior of 

Niowave 

testing 

facility 

A superconducting linac being installed in a 

Niowave testing tunnel 



Niowave Airport Facility 

• New manufacturing facility under construction 

25 

– Beneficial 

occupancy in 

Nov 2014 

 

– Production & 

distribution of 

isotopes 

• 24/7 operation 

 

– Additional 

expansion 

space available 



Summary 

• Niowave’s photonuclear isotope facilities will be 

capable of supplying the entire Mo-99 

requirements of North America 

• First Mo-99 production (small scale)  

– Planned for Dec 2014 

• Research isotopes supplied to DOE Isotope Program 

– Planned for Dec 2014 
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